Heterogeneous reactions of surface-adsorbed catechol with nitrogen dioxide: substrate effects for tropospheric aerosol surrogatesw

نویسندگان

  • Laurie A. Woodill
  • Ryan Z. Hinrichs
چکیده

Surface-adsorbed organics can alter the chemistry of tropospheric aerosols thereby impacting photochemical cycles and altering aerosol properties. The nature of the surface can also influence the chemistry of the surface-adsorbed organic. We employed diffuse reflectance infrared spectroscopy (DRIFTS) to monitor the adsorption of gaseous catechol on several tropospheric aerosol surrogates and to investigate the subsequent reactivity of adsorbed catechol with nitrogen dioxide. The dark heterogeneous reaction of NO2 with NaCl-adsorbed catechol produced 4-nitrocatechol, 1,2-benzoquinone, and the ring-cleaved product muconic acid, with product yields of 88%, 8%, and 4% at relative humidity (RH) o 2%, respectively. The reaction was first-order with respect to both catechol and NO2. The reactive uptake coefficient for NO2 + NaCl-adsorbed catechol increased from 3 10 6 at o2% RH to 7 10 6 at 30% RH. These reactions were more than two orders of magnitude more reactive than NaCl without adsorbed catechol. The 4-nitrocatechol product yield was enhanced on NaF, while NaBr-adsorbed catechol produced considerably more 1,2-benzoquinone and muconic acid. This substrate effect is discussed in terms of each substrate’s ability to polarize the phenol group and hinder hydrogen atom abstraction from intermediate o-semiquinone radicals. These dark heterogeneous reactions may alter the UV-visible absorbing properties of tropospheric aerosols and may also contribute as a dark source of NO2 /HONO. These results contrast prior observations which found pure catechol thin films unreactive with NO2, highlighting the need to specifically consider substrate and matrix effects in laboratory systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneous reactions of surface-adsorbed catechol with nitrogen dioxide: substrate effects for tropospheric aerosol surrogates.

Surface-adsorbed organics can alter the chemistry of tropospheric aerosols thereby impacting photochemical cycles and altering aerosol properties. The nature of the surface can also influence the chemistry of the surface-adsorbed organic. We employed diffuse reflectance infrared spectroscopy (DRIFTS) to monitor the adsorption of gaseous catechol on several tropospheric aerosol surrogates and to...

متن کامل

1 Heterogeneous Chemistry and Tropospheric Ozone

Ozone is produced in the troposphere by gas-phase oxidation of hydrocarbons and CO catalyzed by hydrogen oxide radicals (HOx ≡ OH + peroxy radicals) and nitrogen oxide radicals (NOx ≡ NO+NO2). Heterogeneous chemistry involving reactions in aerosol particles and cloud droplets can perturb O3 concentrations in a number of ways including production and loss of HOx and NOx, direct loss of O3, and p...

متن کامل

Assessment of the global impact of aerosols on tropospheric oxidants

[1] We present here a fully coupled global aerosol and chemistry model for the troposphere. The model is used to assess the interactions between aerosols and chemical oxidants in the troposphere, including (1) the conversion from gas-phase oxidants into the condensed phase during the formation of aerosols, (2) the heterogeneous reactions occurring on the surface of aerosols, and (3) the effect ...

متن کامل

Temperature Dependence of Slow Heterogeneous Reactions on Soot Aerosol

In atmospheric chemistry it is a well established method to use elementary reactions, studied in the laboratory, to set up reaction schemes able to describe the chemical behaviour of complex multi component mixtures. For systems including heterogeneous reaction steps this method is not always feasible mainly because of problems to understand and to quantify the heterogeneous processes on the mo...

متن کامل

Study of tropospheric ozone concentration trend of Kermanshah by meteorological parameter and ozone precursor and OMI images

Abstract: Clean air is a necessity for human well-being and health. Air pollution is a major threat to humans and other organisms and is considered as one of the environmental challenges. Today, with the increase in air pollution, the need to know more about the causes of its occurrence has been raised. The various consequences of air pollution have made air quality monitoring and control inev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010